Invited Review HIGHLIGHTED TOPIC Regulation of the Cerebral Circulation Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation

نویسندگان

  • Charles W. Leffler
  • Helena Parfenova
  • Jonathan H. Jaggar
  • Rui Wang
چکیده

Leffler, Charles W., Helena Parfenova, Jonathan H. Jaggar, and Rui Wang. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol 100: 1065–1076, 2006; doi:10.1152/japplphysiol.00793.2005.— This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca -activated K channels. This binding elevates channel Ca sensitivity, that increases coupling of Ca sparks to large-conductance Ca -activated K channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of L-cysteine catalyzed by cystathione -lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferationassociated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation.

This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1)...

متن کامل

Gaseous modulators in the control of the hypothalamic neurohypophyseal system.

Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalam...

متن کامل

Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease.

Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts several critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by 3 endogenous enzymes and exerts powerful effe...

متن کامل

The role of hydrogen sulfide in stroke

Stroke is a kind of acute cerebrovascular disease characterized by the focal lack of neurological function, including ischemic stroke and hemorrhagic stroke. As society ages rapidly, stroke has become the second leading cause of disability and death, and also become the main threat to human health and life. In recent years, findings from increasing animal and clinical trials have supplied scien...

متن کامل

Hydrogen sulphide and the hyperdynamic circulation in cirrhosis: a hypothesis.

Cirrhosis is associated with the development of a hyperdynamic circulation, which is secondary to the presence of systemic vasodilatation. Several mechanisms have been postulated to be involved in the development of systemic vasodilatation, including increased synthesis of nitric oxide, hyperglucagonaemia, increased carbon monoxide synthesis, and activation of K(ATP) channels in vascular smooth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006